Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials

Author:

Bloch Daria1,Puli Malikarjuna Rao1ORCID,Mosquna Assaf2,Yalovsky Shaul1ORCID

Affiliation:

1. School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel

2. The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel

Abstract

Patterning of the root xylem into protoxylem (PX) and metaxylem is regulated by auxin-cytokinin signaling and microRNA miR165a/166b-mediated suppression of genes encoding Class III HOMEODOMAIN LEU-ZIPPER (HD-ZIPIII) proteins. We found that in Arabidopsis osmotic stress via core abscisic acid (ABA) signaling in meristematic endodermal cells induces differentiation of PX in radial and longitudinal axes in association with increased VND7 expression. Similarly, in tomato ABA enhanced PX differentiation in the longitudinally and radially, indicating an evolutionarily conserved mechanism. ABA increased expression of miR165a/166b and reduced expression of miR165a/166b repressor ARGONAOUTE10/ZWILLE, resulting in reduced levels of all five HD-ZIPIII RNAs. ABA treatments failed to induce additional PX files in a miR165a/166b-resistant PHB mutant, phb1-d, and in scr and shr mutants, in which miR165a/166b expression are strongly reduced. Thus, ABA regulates xylem patterning and maturation via miR165a/166b-regulated expression of HD-ZIPIII mRNAs and associated VND7 levels. In lateral root initials, ABA induced increase in miR165a levels in endodermal precursors and inhibited their reduction in the future quiescent center specifically at pre-emergence stage. Hence, ABA-induced inhibition of lateral root is associated with reduced HD-ZIPIII levels.

Funder

Israel Academy of Sciences and Humanities

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3