Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP

Author:

Willoughby Debbie1,Cooper Dermot M. F.1

Affiliation:

1. Department of Pharmacology, Tennis Court Road, University of Cambridge, CB2 1PD, UK

Abstract

The spatial and temporal complexity of Ca2+ signalling is central to the regulation of a diverse range of cellular processes. The decoding of dynamic Ca2+ signals is, in part, mediated by the ability of Ca2+ to regulate other second messengers, including cyclic AMP (cAMP). A number of kinetic models (including our own) predict that interdependent Ca2+ and cAMP oscillations can be generated. A previous study in Xenopus neurons illustrated prolonged, low-frequency cAMP oscillations during bursts of Ca2+ transients. However, the detection of more dynamic Ca2+ driven changes in cAMP has, until recently, been limited by the availability of suitable cAMP probes with high temporal resolution. We have used a newly developed FRET-based cAMP indicator comprised of the cAMP binding domain of Epac-1 to examine interplay between Ca2+ and cAMP dynamics. This probe was recently used in excitable cells to reveal an inverse relationship between cAMP and Ca2+ oscillations as a consequence of Ca2+-dependent activation of phosphodiesterase 1 (PDE1). Here, we have used human embryonic kidney (HEK293) cells expressing the type 8 adenylyl cyclase (AC8) to examine whether dynamic Ca2+ changes can mediate phasic cAMP oscillations as a consequence of Ca2+-stimulated AC activity. During artificial or agonist-induced Ca2+ oscillations we detected fast, periodic changes in cAMP that depended upon Ca2+ stimulation of AC8 with subsequent PKA-mediated phosphodiesterase 4 (PDE4) activity. Carbachol (10 μM) evoked cAMP transients with a peak frequency of ∼3 minute-1, demonstrating phasic oscillations in cAMP and Ca2+ in response to physiological stimuli. Furthermore, by imposing a range of Ca2+-oscillation frequencies, we demonstrate that AC8 acts as a low-pass filter for high-frequency Ca2+ events, enhancing the regulatory options available to this signalling pathway.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3