Author:
Osakabe Akihisa,Tachiwana Hiroaki,Takaku Motoki,Hori Tetsuya,Obuse Chikashi,Kimura Hiroshi,Fukagawa Tatsuo,Kurumizaka Hitoshi
Abstract
In eukaryotes, transcription occurs in the chromatin context with the assistance of histone binding proteins, such as chromatin/nucleosome remodeling factors and histone chaperones. However, it is unclear how each remodeling factor or histone chaperone functions in transcription. Here, we identified a novel histone-binding protein, Spt2, in higher eukaryotes. Recombinant human Spt2 binds to histones and DNA, and promotes nucleosome assembly in vitro. Spt2 accumulates in nucleoli and interacts with RNA polymerase I in chicken DT40 cells, suggesting its involvement in ribosomal RNA transcription. Consistently, Spt2-deficient chicken DT40 cells are sensitive to RNA polymerase I inhibitors and exhibit decreased transcription activity, based on a transcription run-on assay. Domain analyses of Spt2 revealed that the C-terminal region, containing the region homologous to yeast Spt2, is responsible for histone binding, while the central region is essential for nucleolar localization and DNA binding. Based on these results, we conclude that vertebrate Spt2 is a novel histone chaperone with a separate DNA binding domain, facilitating ribosomal DNA transcription through chromatin remodeling during transcription.
Publisher
The Company of Biologists
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献