Development of oxygen sensing in the gills of zebrafish

Author:

Jonz Michael G.1,Nurse Colin A.1

Affiliation:

1. Department of Biology, McMaster University, 1280 Main Street West,Hamilton, ON, Canada L8S 4K1

Abstract

SUMMARY Previous studies have described the morphology, innervation and O2-chemoreceptive properties of neuroepithelial cells (NECs) of the zebrafish gill filaments. The present work describes the ontogenesis of these cells, and the formation of functional O2-sensing pathways in developing zebrafish. Confocal immunofluorescence was performed on whole-mount gill preparations using antibodies against serotonin (5-HT) and a zebrafish-derived neuronal marker (zn-12) to identify the appearance and innervation of gill NECs during larval stages. NECs were first expressed in gill filament primordia of larvae at 5 days postfertilization (d.p.f.) and were fully innervated by 7 d.p.f. In vivo ventilation frequency analysis revealed that a behavioural response to hypoxia (11.2±2.8 min–1) developed in embryos as early as 2 d.p.f., and a significant increase (P<0.05) in the ventilatory response to hypoxia (200.8±23.0 min–1) coincided with innervation of NECs of the filaments. In addition, exogenous application of quinidine, a blocker of O2-sensitive background K+ channels in NECs,induced hyperventilation in adults in a dose-dependent manner and revealed the development of a quinidine-sensitive ventilatory response in 7 d.p.f. larvae. This study shows that NEC innervation in the gill filaments may account for the development of a functional O2-sensing pathway and the hyperventilatory response to hypoxia in zebrafish larvae. At earlier stages,however, O2-sensing must occur through another pathway. The possibility that a new type of 5-HT-positive NEC of the gill arches may account for this earlier hypoxic response is discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3