Functional and morphological plasticity of crocodile (Crocodylus porosus) salt glands

Author:

Cramp Rebecca L.1,Meyer Edward A.1,Sparks Nicole1,Franklin Craig E.1

Affiliation:

1. School of Integrative Biology, The University of Queensland, St Lucia,Brisbane, 4072 Australia

Abstract

SUMMARYThe estuarine crocodile, Crocodylus porosus, inhabits both freshwater and hypersaline waterways and maintains ionic homeostasis by excreting excess sodium and chloride ions via lingual salt glands. In the present study, we sought to investigate the phenotypic plasticity, both morphological and functional, in the lingual salt glands of the estuarine crocodile associated with chronic exposure to freshwater (FW) and saltwater(SW) environments. Examination of haematological parameters indicated that there were no long-term disruptions to ionic homeostasis with prolonged exposure to SW. Maximal secretory rates from the salt glands of SW-acclimated animals (100.8±14.7 μmol 100 g–0.7 body mass h–1) were almost three times greater than those of FW-acclimated animals (31.6±6.2 μmol 100 g–0.7 body mass h–1). There were no differences in the mass-specific metabolic rate of salt gland tissue slices from FW- and SW-acclimated animals(558.9±49.6 and 527.3±142.8 μl O2g–1 h–1, respectively). Stimulation of the tissue slices from SW-acclimated animals by methacholine resulted in a 33%increase in oxygen consumption rate. There was no significant increase in the metabolic rate of tissues from FW-acclimated animals in response to methacholine. Morphologically, the secretory cells from the salt glands of SW-acclimated animals were larger than those of FW-acclimated animals. In addition, there were significantly more mitochondria per unit volume in secretory tissue from SW-acclimated animals. The results from this study demonstrate that the salt glands of C. porosus are phenotypically plastic, both morphologically and functionally and acclimate to changes in environmental salinity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3