Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar)

Author:

Bystriansky Jason S.1,Schulte Patricia M.2

Affiliation:

1. Department of Biological Sciences, 2325 N. Clifton Avenue, DePaul University, Chicago, IL 60614, USA

2. Zoology Department, 6270 University Boulevard, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4

Abstract

SUMMARYFew studies have examined changes in salmon gill ion transporter expression during the transition from seawater to freshwater, a pivotal moment in the salmonid life cycle. Seawater-acclimated Atlantic salmon were transferred to freshwater and blood and gill tissue were sampled over 30 days of acclimation. Salmon held in seawater had stable plasma osmolality and sodium and chloride levels throughout the experiment. Following freshwater exposure, plasma sodium and chloride levels and total osmolality decreased significantly before returning towards control levels over time. Gill H+-ATPase activity increased by more than 45% 14 days after exposure to freshwater, whereas H+-ATPase mRNA levels were not affected by the salinity change. Within 4 days of freshwater exposure, gill Na+/K+-ATPase activity increased ∼43% over control levels, remaining significantly higher until the 30 day sampling group when it declined back to control levels. This increase in activity was associated with a more than 7-fold increase in Na+/K+-ATPase isoform α1a mRNA level and a ∼60% decrease in Na+/K+-ATPase isoform β1b mRNA level. The mRNA levels of Na+/K+-ATPase isoforms α1c and α3 did not change as a result of freshwater exposure. The time courses for mRNA expression of the small membrane protein FXYD 11 and the β1-subunit were very similar, with levels increasing significantly 7 days following freshwater exposure before subsiding back to control levels at 30 days. Taken together, these data suggest an important role for Na+/K+-ATPase in freshwater acclimation in Atlantic salmon.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3