A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology

Author:

Nguyen Vivian V. T.1,Gkouzioti Vasiliki1,Maass Christian2,Verhaar Marianne C.1,Vernooij Robin W. M.13,van Balkom Bas W. M.1ORCID

Affiliation:

1. UMC Utrecht 1 Department of Nephrology and Hypertension , , 3584CX Utrecht , The Netherlands

2. esqLABS GmbH 2 , 26683 Saterland , Germany

3. Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University 3 , 3584CX Utrecht , The Netherlands

Abstract

ABSTRACT As kidney diseases affect ∼10% of the world population, understanding the underlying mechanisms and developing therapeutic interventions are of high importance. Although animal models have enhanced knowledge of disease mechanisms, human (patho-)physiology may not be adequately represented in animals. Developments in microfluidics and renal cell biology have enabled the development of dynamic models to study renal (patho-)physiology in vitro. Allowing inclusion of human cells and combining different organ models, such as kidney-on-a-chip (KoC) models, enable the refinement and reduction of animal experiments. We systematically reviewed the methodological quality, applicability and effectiveness of kidney-based (multi-)organ-on-a-chip models, and describe the state-of-the-art, strengths and limitations, and opportunities regarding basic research and implementation of these models. We conclude that KoC models have evolved to complex models capable of mimicking systemic (patho-)physiological processes. Commercial chips and human induced pluripotent stem cells and organoids are important for KoC models to study disease mechanisms and assess drug effects, even in a personalized manner. This contributes to the Reduction, Refinement and Replacement of animal models for kidney research. A lack of reporting of intra- and inter-laboratory reproducibility and translational capacity currently hampers implementation of these models.

Funder

ZonMw

Nierstichting

Proefdiervrij

Health∼Holland

Hartstichting

Utrecht University

Horizon 2020 Framework Programme

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Universitair Medisch Centrum Utrecht

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3