RhoB plays an essential role in CXCR2 sorting decisions

Author:

Neel Nicole F.12,Lapierre Lynne A.13,Goldenring James R.134,Richmond Ann12

Affiliation:

1. Department of Veterans Affairs, Nashville, TN 37212-2637, USA

2. Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

3. Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

4. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

Abstract

The CXCR2 chemokine receptor is a G-protein-coupled receptor that undergoes clathrin-mediated endocytosis upon ligand binding. The trafficking of CXCR2 is crucial for cells to maintain a proper chemotactic response. The mechanisms that regulate the recycling/degradation sorting decision are unknown. In this study, we used dominant-negative (T19N) and GTPase-deficient activated (Q63L) RhoB mutants, as well as RhoB small interfering RNA (siRNA) to investigate the role of RhoB in CXCR2 trafficking. Expression of either of the RhoB mutants or transfection of RhoB siRNA impaired CXCR2-mediated chemotaxis. Expression of RhoB T19N and transfection of RhoB siRNA impaired sorting of CXCR2 to the lysosome after 3 hours of CXCL8 stimulation and impaired CXCL8-induced CXCR2 degradation. In cells expressing the RhoB Q63L mutant, CXCR2 recycling through the Rab11a recycling compartment was impaired after 30 minutes of CXCL8 stimulation as was CXCL8-induced CXCR2 degradation. For cells expressing activated RhoB, CXCR2 colocalized with Rab4, a marker for the rapid recycling pathway, and with the mannose-6-phosphate receptor, which traffics between the trans-Golgi network and endosomes. These data suggest that CXCR2 recycles through alternative pathways. We conclude that oscillation of RhoB GTPase activity is essential for appropriate sorting decisions, and for directing CXCR2 degradation and recycling – events that are required for optimal chemotaxis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3