Affiliation:
1. Department of Zoology, University of Wisconsin-Madison 53706.
Abstract
Previous studies have shown that large animals have systematically lower mass-specific costs of locomotion than do smaller animals, in spite of there being no demonstrable difference between them in the mass-specific mechanical work of locomotion. Larger animals are somehow much more efficient at converting metabolic energy to mechanical work. The present study analyzes how this decoupling of work and cost might occur. The experimental design employs limb-loaded and back-loaded dogs and allows the energetic cost of locomotion to be partitioned between that used to move the center of mass (external work) and that used to move the limbs relative to the center of mass (internal work). These costs were measured in three dogs moving at four speeds. Increases in the cost of external work with speed parallel increases in the amount of external work based on data from previous studies. However, increases in the cost of internal work with speed are much less (less than 50%) than the increase in internal work itself over the speeds examined. Furthermore, the cost of internal work increases linearly with speed, whereas internal work itself increases as a power function of speed. It is suggested that this decoupling results from an increase with speed in the extent to which the internal work of locomotion is powered by non-metabolic means, such as elastic strain energy and transfer of energy within and between body segments.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献