Tolerance of aquifer stoneflies to repeated hypoxia exposure and oxygen dynamics in an alluvial aquifer

Author:

Malison Rachel L.1ORCID,DelVecchia Amanda G.1ORCID,Woods H. Arthur2,Hand Brian K.1,Luikart Gordon1,Stanford Jack A.1

Affiliation:

1. The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA

2. The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA

Abstract

Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over five years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMR) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg/L, and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 12 to 2 mg/L (P>0.437), but rates of benthic taxa dropped significantly with declining oxygen (P<0.0001; 2.9× lower at 2 vs. 12 mg/L). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (> 12 hours) exposures resulted in lower survival (38-91%) and lower metabolic rates during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3