Glucocorticoid-dependent transdifferentiation of pancreatic progenitor cells into hepatocytes is dependent on transient suppression of WNT signalling

Author:

Wallace Karen1,Marek Carylyn J.12,Hoppler Stefan2,Wright Matthew C.1

Affiliation:

1. Institute of Cellular Medicine, Level 2 Leech Building, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK

2. Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK

Abstract

Developmentally, the pancreas and liver are closely related and pathological conditions – including elevated glucocorticoid levels – result in the appearance of hepatocytes in the pancreas. The role of the WNT signalling pathway in this process has been examined in the model transdifferentiating pancreatic acinar AR42J-B-13 (B-13) cell. Glucocorticoid treatment resulted in a transient loss of constitutive WNT3a expression, phosphorylation and depletion of β-catenin, loss of β-catenin nuclear localisation, and significant reductions in T-cell factor/lymphoid enhancer factor (Tcf/Lef) transcriptional activity before overt changes in phenotype into hepatocyte-like (B-13/H) cells. A return to higher Tcf/Lef transcriptional activity correlated with the re-expression of WNT3a in B-13/H cells. β-catenin knock down alone substituted for and enhanced glucocorticoid-dependent transdifferentiation. Overexpression of a mutant β-catenin (pt-Xβ-cat) protein that blocked glucocorticoid-dependent suppression of Tcf/Lef activity resulted in inhibition of transdifferentiation. A small-molecule activator of Tcf/Lef transcription factors blocked glucocorticoid-dependent effects, as observed with pt-Xβ-cat expression. Quercetin – a Tcf/Lef inhibitor – did not promote transdifferentiation into B-13/H cells, but did potentiate glucocorticoid-mediated transdifferentiation. These data demonstrate that the transdifferentiation of B-13 cells into hepatocyte-like cells in response to glucocorticoid was dependent on the repression of constitutively active WNT signalling.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3