Short-range homing in a site-specific fish: search and directed movements

Author:

Mitamura Hiromichi1,Uchida Keiichi2,Miyamoto Yoshinori2,Kakihara Toshiharu2,Miyagi Aki3,Kawabata Yuuki4,Ichikawa Kotaro5,Arai Nobuaki1

Affiliation:

1. Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

2. Faculty of Marine Science, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan

3. Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan

4. Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan

5. Research Institute for Humanity and Nature, Kyoto 603-8047, Japan

Abstract

SUMMARY Sedentary and territorial rockfish of the genus Sebastes exhibit distinctive homing ability and can travel back to an original location after displacements of metres or even kilometres. However, little is known about the behavioural and sensory mechanisms involved in homing. Although our previous study demonstrated that nocturnal black rockfish Sebastes cheni predominantly use their olfactory sense for homing from an unfamiliar area, the possibility of using landmarks in a familiar area cannot be discounted; i.e. site-specific fish are likely to use three-dimensional spatial memory for navigation and orientation. Using high-resolution acoustic telemetry, we investigated whether S. cheni exhibit distinctive homing paths. Results show that all of the eight rockfish increased their effort within a small area of an unfamiliar region around the release site just after displacement, suggesting that the rockfish probably searched for the homeward direction. The rockfish showed the search movement in the upstream and/or downstream direction, which did not lead home. Finally, after returning to their familiar area, the rockfish exhibited more directed movements with faster speeds at a shallower depth, which was similar to the depth utilised in daily life as well as that of the fish capture.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3