Intraspecific variation in metabolic rate and its correlation with local environment in the Chinese scorpion Mesobuthus martensii

Author:

Wang Wei12ORCID,Liu Gao-Ming12,Zhang De-Xing123ORCID

Affiliation:

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China

2. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

3. Beijing Institute of Genomics, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China

Abstract

Scorpions are well known for their reduced resting metabolic rate (RMR) in comparison to typical arthropods. Since RMR is a key physiological trait linked with evolutionary fitness, it is expected that there may exist intraspecific RMR variation given the ecological and geographical heterogeneities across the distributional range of a species. Nevertheless, it is unclear whether RMR variation exists among scorpion populations. Here, we compared the RMR (VCO2) of 21 populations of the Chinese scorpion Mesobuthus martensii (Scorpiones: Buthidae) at 25℃ after at least 3 months of laboratory acclimation. The following results were obtained. First, there was significant difference in RMR between sexes, when weight effects were factored out. Second, significant local variation in RMR was detected by analyses of both variance and covariance, with one population showing significantly reduced RMR and another significantly increased RMR. Third, regression analysis indicated that the local mean temperature and mean annual days of rainfall were the two significant factors associated with the aforementioned inter-population difference in RMR. The implication of such an association was discussed.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3