Suspensor-derived somatic embryogenesis in Arabidopsis

Author:

Radoeva Tatyana1ORCID,Albrecht Catherine1,Piepers Marcel1,de Vries Sacco1ORCID,Weijers Dolf1ORCID

Affiliation:

1. Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands

Abstract

In many flowering plants, asymmetric division of the zygote generates apical and basal cells with different fates. In Arabidopsis thaliana, the apical cell generates the embryo while the basal cell divides anticlinally, leading to a suspensor of 6-9 cells that remain extra-embryonic and eventually senesce. In some genetic backgrounds, or upon ablation of the embryo, suspensor cells can undergo periclinal cell divisions and eventually form a second, twin embryo. Likewise, embryogenesis can be induced from somatic cells by various genes, but the relation to suspensor-derived embryos is unclear. Here, we addressed the nature of the suspensor to embryo fate transformation, and its genetic triggers. We expressed most known embryogenesis-inducing genes specifically in suspensor cells. We next analyzed morphology and fate marker expression in embryos in which suspensor division were activated by different triggers to address the developmental paths towards reprogramming. Our results show that reprogramming of Arabidopsis suspensor cells towards embryonic identity is a specific cellular response that is triggered by defined regulators, follows a conserved developmental trajectory and shares similarity to the process of somatic embryogenesis from post-embryonic tissues.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3