Annual cycles of metabolic rate are genetically determined but can be shifted by phenotypic flexibility

Author:

Versteegh Maaike A.1,Helm Barbara2,Gwinner Eberhard3,Tieleman B. Irene4

Affiliation:

1. University of Groningen;

2. Max Planck Institute for Ornithology; University of Glasgow;

3. Max Planck Institute for Ornithology;

4. University of Groningen; Max Planck Institute for Ornithology

Abstract

Summary Birds have adjusted their life-history and physiological traits to the characteristics of the seasonally changing environments they inhabit. Annual cycles in physiology can result from phenotypic flexibility or from variation in its genetic basis. A key physiological trait that shows seasonal variation is basal metabolic rate (BMR). We studied genetic and phenotypic variation in the annual cycles of body mass, BMR and mass-specific BMR in three stonechat subspecies (Saxicola torquata) originating from environments that differ in seasonality, and in two hybrid lines. Birds were kept in a common garden set-up, under annually variable day length and at constant temperature. We also studied whether stonechats use the proximate environmental factor temperature as a cue for changes in metabolic rate, by keeping birds at two different temperature regimes. We found that the different subspecies kept in a common environment had different annual cycles of body mass, BMR (variance: Kazakh 4.12, European 1.31, Kenyans 1.25) and mass-specific BMR (variance: Kazakh 0.042, European 0.003, Kenyans 0.013). Annual variation in metabolic measures of hybrids was intermediate or similar to parental species. Temperature treatment did not affect the shape of the annual cycles of metabolic rate, but metabolic rate was higher in birds kept under the variable temperature regime. The distinct annual cycles in body mass and metabolic rate in stonechats subspecies kept in a common environment indicate different genetic backgrounds rather than merely a phenotypically flexible response to proximate environmental cues. Phenotypic effects of temperature are superimposed on this genetically orchestrated annual cycle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3