Host–parasite molecular cross-talk during the manipulative process of a host by its parasite

Author:

Biron David G.12,Loxdale Hugh D.3

Affiliation:

1. Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, BP 10448, F-63000 Clermont-Ferrand, France

2. CNRS, UMR 6023, LMGE, F-63177 Aubiere, France

3. Royal Entomological Society, Chiswell Green Lane, St Albans AL2 3NS, UK

Abstract

Summary Many parasite taxa are able to alter a wide range of phenotypic traits of their hosts in ways that seem to improve the parasite’s chance of completing its life cycle. Host behavioural alterations are classically seen as compelling illustrations of the ‘extended phenotype’ concept, which suggests that parasite genes have phenotype effects on the host. The molecular mechanisms and the host–parasite cross-talk involved during the manipulative process of a host by its parasite are still poorly understood. In this Review, the current knowledge on proximate mechanisms related to the ‘parasite manipulation hypothesis’ is presented. Parasite genome sequences do not themselves provide a full explanation of parasite biology nor of the molecular cross-talk involved in host–parasite associations. Recently, first-generation proteomics tools have been employed to unravel some aspects of the parasite manipulation process (i.e. proximate mechanisms and evolutionary convergence) using certain model arthropod-host–parasite associations. The pioneer proteomics results obtained on the manipulative process are here highlighted, along with the many gaps in our knowledge. Candidate genes and biochemical pathways potentially involved in the parasite manipulation are presented. Finally, taking into account the environmental factors, we suggest new avenues and approaches to further explore and understand the proximate mechanisms used by parasite species to alter phenotypic traits of their hosts.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3