Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments

Author:

Eriksson John E.12,He Tao234,Trejo-Skalli Amy V.5,Härmälä-Braskén Ann-Sofi23,Hellman Jukka2,Chou Ying-Hao5,Goldman Robert D.5

Affiliation:

1. Department of Biology, Laboratory of Animal Physiology, University of Turku, Science Building 1, FIN-20014 Turku, Finland

2. Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland

3. Department of Biochemistry, Åbo Akademi University, FIN-20521 Turku, Finland

4. Turku Graduate School of Biomedical Sciences, Kiinanmyllynkatu 13, FIN-20520, Turku, Finland

5. Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL-60611-3008, USA

Abstract

Intermediate filaments (IFs) continuously exchange between a small, depolymerized fraction of IF protein and fully polymerized IFs. To elucidate the possible role of phosphorylation in regulating this equilibrium, we disrupted the exchange of phosphate groups by specific inhibition of dephosphorylation and by specific phosphorylation and site-directed mutagenesis of two of the major in vivo phosphorylation sites determined in this study. Inhibition of type-1 (PP1) and type-2A (PP2A) protein phosphatases in BHK-21 fibroblasts with calyculin-A, induced rapid vimentin phosphorylation in concert with disassembly of the IF polymers into soluble tetrameric vimentin oligomers. This oligomeric composition corresponded to the oligopeptides released by cAMP-dependent kinase (PKA) following in vitro phosphorylation. Characterization of the 32P-labeled vimentin phosphopeptides, demonstrated Ser-4, Ser-6, Ser-7, Ser-8, Ser-9, Ser-38, Ser-41, Ser-71, Ser-72, Ser-418, Ser-429, Thr-456, and Ser-457 as significant in vivo phosphorylation sites. A number of the interphase-specific high turnover sites were shown to be in vitro phosphorylation sites for PKA and protein kinase C (PKC). The effect of presence or absence of phosphate groups on individual subunits was followed in vivo by microinjecting PKA-phosphorylated (primarily S38 and S72) and mutant vimentin (S38:A, S72:A), respectively. The PKA-phosphorylated vimentin showed a clearly decelerated filament formation in vivo, whereas obstruction of phosphorylation at these sites by site-directed mutagenesis had no significant effect on the incorporation rates of subunits into assembled polymers. Taken together, our results suggest that elevated phosphorylation regulates IF assembly in vivo by changing the equilibrium constant of subunit exchange towards a higher off-rate.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3