Peripheral and behavioral plasticity of pheromone response and its hormonal control in a long-lived moth

Author:

Lemmen Joelle1,Evenden Maya1

Affiliation:

1. Department of Biological Sciences, CW405 Biological Sciences Building,University of Alberta, Edmonton, AB, Canada T6G 2E9

Abstract

SUMMARY Reproductive success in many animals depends on the efficient production of and response to sexual signals. In insects, plasticity in sexual communication is predicted in species that experience periods of reproductive inactivity when environmental conditions are unsuitable for reproduction. Here, we study a long-lived moth Caloptilia fraxinella (Ely) (Lepidoptera:Gracillariidae) that is reproductively inactive from eclosion in summer until the following spring. Male sex pheromone responsiveness is plastic and corresponds with female receptivity. Pheromone response plasticity has not been studied in a moth with an extended period of reproductive inactivity. In this study, we ask whether male antennal response and flight behavior are plastic during different stages of reproductive inactivity and whether these responses are regulated by juvenile hormone. Antennal response to the pheromone blend is significantly reduced in reproductively inactive males tested in the summer and autumn as compared with reproductively active males tested in the spring. Reproductively inactive autumn but not summer males show lower antennal responses to individual pheromone components compared with spring males. Treatment with methoprene enhances antennal response of autumn but not summer males to high doses of the pheromone blend. Behavioral response is induced by methoprene treatment in males treated in the autumn but not in the summer. Plasticity of pheromone response in C. fraxinella is regulated, at least in part, by the peripheral nervous system. Antennal and behavioral response to pheromone differed in reproductively active and inactive males and increased with methoprene treatment of inactive males.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3