NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area

Author:

Gerasimenko Julia V.1,Sherwood Mark1,Tepikin Alexei V.1,Petersen Ole H.1,Gerasimenko Oleg V.1

Affiliation:

1. MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK

Abstract

Inositol trisphosphate and cyclic ADP-ribose release Ca2+ from the endoplasmic reticulum via inositol trisphosphate and ryanodine receptors, respectively. By contrast, nicotinic acid adenine dinucleotide phosphate may activate a novel Ca2+ channel in an acid compartment. We show, in two-photon permeabilized pancreatic acinar cells, that the three messengers tested could each release Ca2+ from the endoplasmic reticulum and also from an acid store in the granular region. The nicotinic acid adenine dinucleotide phosphate action on both types of store, like that of cyclic ADP-ribose but unlike inositol trisphosphate, depended on operational ryanodine receptors, since it was blocked by ryanodine or ruthenium red. The acid Ca2+ store in the granular region did not have Golgi or lysosomal characteristics and might therefore be associated with the secretory granules. The endoplasmic reticulum is predominantly basal, but thin extensions penetrate into the granular area and cytosolic Ca2+ signals probably initiate at sites where endoplasmic reticulum elements and granules come close together.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3