Cerebellar synapse properties and cerebellum-dependent motor and non-motor performance in Dp71-null mice

Author:

Helleringer Romain1,Le Verger Delphine1,Li Xia1ORCID,Izabelle Charlotte1ORCID,Chaussenot Rémi1ORCID,Belmaati-Cherkaoui Mehdi1ORCID,Dammak Raoudha1,Decottignies Paulette1,Daniel Hervé1,Galante Micaela1ORCID,Vaillend Cyrille1ORCID

Affiliation:

1. Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France

Abstract

A recent focus has been placed on the role that cerebellar dysfunctions could play in the genesis of cognitive deficits in Duchenne muscular dystrophy (DMD). However, relevant genotype-phenotype analyses are missing to define whether cerebellar defects underlie the severe cases of intellectual deficiency, which have been associated with genetic loss of the smallest product of the dmd gene, the Dp71 dystrophin. To determine for the first time whether Dp71 loss could affect cerebellar physiology and functions, we have used patch-clamp electrophysiological recordings in acute cerebellar slices and a cerebellum-dependent behavioral test battery addressing cerebellum-dependent motor and non-motor functions in Dp71-null transgenic mice. We found that Dp71 deficiency selectively enhances excitatory transmission at glutamatergic synapses formed by climbing fibers (CFs) on Purkinje neurons, but not at those formed by parallel fibers (PFs). Altered basal neurotransmission at CFs was associated with impairments in synaptic plasticity and clustering of the scaffolding post-synaptic density protein PSD-95. At the behavioral level, Dp71-null mice showed some improvements in motor coordination and were unimpaired for muscle force, static and dynamic equilibrium, motivation in high-motor demand and synchronization learning. However, Dp71-null mice displayed altered strategies in goal-oriented navigation tasks, suggesting a deficit in the cerebellum-dependent processing of the procedural components of spatial learning which could contribute to the visuo-spatial deficits identified in this model. In all, the observed deficits suggest that Dp71 loss alters cerebellar synapse function and cerebellum-dependent navigation strategies without being detrimental for motor functions.

Funder

Agence Nationale de la Recherche

Association Française contre les Myopathies

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3