Affiliation:
1. Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, The National University of Singapore, 14 Science Drive 4, Singapore 117543, The Republic of Singapore
Abstract
Rho GTPases are important regulators for cell dynamics. They are activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins (GAPs). We recently identified a novel RhoGAP, BPGAP1, that uses the BNIP-2 and Cdc42GAP homology (BCH) domain, RhoGAP domain and proline-rich region to regulate cell morphology and migration. To further explore its roles in intracellular signaling, we employed protein precipitations and matrix-assisted laser desorption/ionization mass-spectrometry and identified EEN/endophilin II as a novel partner of BPGAP1. EEN is a member of the endocytic endophilin family but its function in regulating endocytosis remains unclear. Pull-down and co-immunoprecipitation studies with deletion mutants confirmed that EEN interacted directly with BPGAP1 via its Src homology 3 (SH3) domain binding to the proline-rich region 182-PPPRPPLP-189 of BPGAP1, with prolines 184 and 186 being indispensable for this interaction. Overexpression of EEN or BPGAP1 alone induced EGF-stimulated receptor endocytosis and ERK1/2 phosphorylation. These processes were further enhanced when EEN was present together with the wildtype but not with the non-interactive proline mutant of BPGAP1. However, EEN lacking the SH3 domain served as a dominant negative mutant that completely inhibited these effects. Furthermore, BPGAP1 with a catalytically inactive GAP domain also blocked the effect of EEN and/or BPGAP1 in EGF receptor endocytosis and concomitantly reduced their level of augmentation for ERK1/2 phosphorylation. Our findings reveal a concomitant activation of endocytosis and ERK signaling by BPGAP1 via the coupling of its proline-rich region, which targets EEN and its functional GAP domain. BPGAP1 could therefore provide an important link between cytoskeletal network, endocytic trafficking and Ras/MAPK signaling.
Publisher
The Company of Biologists
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献