Limitations on Animal Flight Performance

Author:

ELLINGTON C. P.1

Affiliation:

1. Department of Zoology, University of Cambridge Downing Street, Cambridge CB2 3EJ, England

Abstract

Flight performance seems to change systematically with body size: small animals can hover and fly over a wide range of speeds, but large birds taxi for takeoff and then fly over a narrow speed range. The traditional explanation for this is that the mass-specific power required for flight varies with speed according to a U-shaped curve, and it also scales between m0 and m1/6, where m is body mass. The mass-specific power available from the flight muscles is assumed to scale as m−1/3. As available power decreases with increasing body size, the range of attainable flight speeds becomes progressively reduced until the largest animals can only fly in the trough of the U-shaped curve. Above a particular size, the available power is insufficient and flapping flight is not possible. The underlying assumptions of this argument are examined in this review. Metabolic measurements are more consistent with a J-shaped curve, with little change in power from hovering to intermediate flight speeds, than with a U-shaped curve. Scaling of the mass-specific power required to fly agrees with predictions. The mass-specific power available from, the muscles, estimated from maximal loading studies, varies as m0.13. This scaling cannot be distinguished from that of the power required to fly, refuting the argument that power imposes an intrinsic scaling on flight performance. It is suggested instead that limitations on low-speed performance result from an adverse scaling of lift production with increasing body size.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3