Mapping CRMP3 domains involved in dendrite morphogenesis and voltage-gated calcium channel regulation

Author:

Quach Tam T,Wilson Sarah M,Rogemond Veronique,Chounlamountri Naura,Kolattukudy Pappachan E,Martinez Stephanie,Khanna May,Belin Marie-Francoise,Khanna Rajesh,Honnorat Jerome,Duchemin Anne-Marie

Abstract

Although hippocampal neurons are well-distinguished by the morphological characteristics of their dendrites and their structural plasticity, the mechanisms involved in regulating their neurite initiation, dendrite growth, network formation and remodeling are still largely unknown, in part because the key molecules involved remain elusive. Identifying new dendrite-active cues could uncover unknown molecular mechanisms that would add significant understanding to the field and possibly lead to the development of novel neuroprotective therapy since these neurons are impaired in many neuropsychiatric disorders. In our previous studies, we deleted the gene coding CRMP3 in mice and identified the protein as a new endogenous signaling molecule that shapes diverse features of the hippocampal pyramidal dendrites without affecting axon morphology. We also found that CRMP3 protects dendrites against dystrophy induced by prion peptide PrP106–126. Here, we report that CRMP3 has a profound influence on neurite initiation and dendrite growth of hippocampal neurons in vitro. Our deletional mapping revealed that the carboxyl terminus of CRMP3 likely harbors its dendritogenic capacity and supports an active transport mechanism. In contrast, overexpression of the C-terminal truncated CRMP3 phenocopied the effect of CRMP3 gene deletion with inhibition of neurite initiation or decrease in dendrite complexity, depending on the stage of cell development. In addition, this mutant inhibited the activity of CRMP3, similarly to siRNA. Voltage-gated calcium channel inhibitors prevented CRMP3-induced dendritic growth and somatic Ca2+influx in CRMP3-overexpressing neurons was augmented largely via L-type channels. These results support a link between CRMP3-mediated Ca2+ influx and CRMP3-mediated dendritic growth in hippocampal neurons.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3