Lower-limb joint mechanics during maximum acceleration sprinting

Author:

Schache Anthony G.12ORCID,Lai Adrian K. M.3,Brown Nicholas A. T.4,Crossley Kay M.1,Pandy Marcus G.2

Affiliation:

1. La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, VIC, Australia

2. Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, Australia

3. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada

4. Faculty of Health, University of Canberra, Bruce ACT, Australia

Abstract

We explored how humans adjust the stance phase mechanical function of their major lower-limb joints (hip, knee, ankle) during maximum acceleration sprinting. Experimental data (motion capture and ground reaction force (GRF)) were recorded from eight participants as they performed overground sprinting trials. Six alternative starting locations were used to obtain a dataset that incorporated the majority of the acceleration phase. Experimental data were combined with an inverse-dynamics-based analysis to calculate lower-limb joint mechanical variables. As forward acceleration magnitude decreased, the vertical GRF impulse remained nearly unchanged whereas the net horizontal GRF impulse became smaller due to less propulsion and more braking. Mechanical function was adjusted at all three joints, although more dramatic changes were observed at the hip and ankle. The impulse from the ankle plantar-flexor moment was almost always larger than those from the hip and knee extensor moments. Forward acceleration magnitude was linearly related to the impulses from the hip extensor moment (R2=0.45) and the ankle plantar-flexor moment (R2=0.47). Forward acceleration magnitude was also linearly related to the net work done at all three joints, with the ankle displaying the strongest relationship (R2=0.64). The ankle produced the largest amount of positive work (1.55±0.17 J/kg) of all the joints, and provided a significantly greater proportion of the summed amount of lower-limb positive work as running speed increased and forward acceleration magnitude decreased. We conclude that the hip and especially the ankle represent key sources of positive work during the stance phase of maximum acceleration sprinting.

Funder

Australian Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. Mechanical power and work done by the muscles of the lower limb during running at different speeds;Ae,1987

2. The effect of speed on leg stiffness and joint kinetics in human running;Arampatzis;J. Biomech.,1999

3. Ankle joint mechanics and foot proportions differ between human sprinters and non-sprinters;Baxter;Proc. Biol. Sci.,2012

4. Moment and power of lower limb joints in running;Belli;Int. J. Sports Med.,2002

5. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies;Bezodis;J. Sports Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3