SuperCLEM: an accessible correlative light and electron microscopy approach for investigation of neurons and glia in vitro

Author:

Booth Daniel G.1ORCID,Beckett Alison J.2ORCID,Prior Ian A.2ORCID,Meijer Dies1ORCID

Affiliation:

1. Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, UK

2. Biomedical Electron Microscopy Unit, Department of Molecular and Cellular Biology, University of Liverpool, Crown Street, Liverpool, UK

Abstract

The rapid evolution of super-resolution light microscopy has narrowed the gap between light and electron microscopy, allowing the imaging of molecules and cellular structures at high resolution within their normal cellular and tissue context. Multimodal imaging approaches such as correlative light electron microscopy (CLEM) combine these techniques to create a tool with unique imaging capacity. However, these approaches are typically reserved for specialists, and their application to the analysis of neural tissue is challenging. Here we present SuperCLEM, a relatively simple approach that combines super-resolution fluorescence light microscopy (FLM), 3D electron microscopy (3D-EM) and rendering into 3D models. We demonstrate our workflow using neuron-glia cultures from which we first acquire high-resolution fluorescent light images of myelinated axons. After resin embedding and re-identification of the region of interest, serially aligned EM sections are acquired and imaged using a serial block face scanning electron microscope (SBF-SEM). The FLM and 3D-EM data sets are then combined to render 3D models of the myelinated axons. Thus, the SuperCLEM imaging pipeline is a useful new tool for researchers pursuing similar questions in neuronal, as well as other complex tissue culture systems.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3