A Gata2 intronic enhancer confers its pan-endothelia-specific regulation

Author:

Khandekar Melin1,Brandt William1,Zhou Yinghui1,Dagenais Susan2,Glover Thomas W.2,Suzuki Norio3,Shimizu Ritsuko13,Yamamoto Masayuki3,Lim Kim-Chew1,Engel James Douglas1

Affiliation:

1. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.

2. Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.

3. TARA Centre, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577,Japan.

Abstract

GATA-2, a transcription factor that has been shown to play important roles in multiple organ systems during embryogenesis, has been ascribed the property of regulating the expression of numerous endothelium-specific genes. However,the transcriptional regulatory hierarchy governing Gata2 activation in endothelial cells has not been fully explored. Here, we document GATA-2 endothelial expression during embryogenesis by following GFP expression in Gata2-GFP knock-in embryos. Using founder transgenic analyses, we identified a Gata2 endothelium enhancer in the fourth intron and found that Gata2 regulation by this enhancer is restricted to the endocardial, lymphatic and vascular endothelium. Whereas disruption of three ETS-binding motifs within the enhancer diminished its activity, the ablation of its single E box extinguished endothelial enhancer-directed expression in transgenic mice. Development of the endothelium is known to require SCL(TAL1), and an SCL-E12 (SCL-Tcfe2a) heterodimer can bind the crucial E box in the enhancer in vitro. Thus, GATA-2 is expressed early in lymphatic, cardiac and blood vascular endothelial cells, and the pan-endothelium-specific expression of Gata2 is controlled by a discrete intronic enhancer.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3