Cloacal evaporative cooling: a previously undescribed means of increasing evaporative water loss at higher temperatures in a desert ectotherm, the Gila monster Heloderma suspectum

Author:

DeNardo Dale F.1,Zubal Tricia E.1,Hoffman Ty C.M.1

Affiliation:

1. Department of Biology, Arizona State University, Tempe, AZ 85287-4501, USA

Abstract

SUMMARY The Gila monster Heloderma suspectum is an active forager in an environment that, at times, can be extremely hot and arid. Thus, Gila monsters face extreme thermostatic and hydrostatic demands. For a desert ectotherm routinely risking dehydration, evaporative water loss (EWL) is typically viewed as detrimental. Yet evaporation simultaneously dehydrates and cools an animal. We explored EWL in Gila monsters by measuring cutaneous, ventilatory and cloacal EWL at five ambient temperatures between 20.5°C and 40°C. Our results show that Gila monsters have high EWL rates relative to body mass. Cutaneous EWL underwent a consistent, temperature-dependent increase over the entire range of test temperatures (Q10=1.61, with EWL ranging from 0.378 to 0.954 mg g–1 h–1). Ventilatory EWL did not show a significant temperature-dependent response, but ranged from 0.304 to 0.663 mg g–1 h–1. Cloacal EWL was extremely low and relatively constant between 20.5°C and 35°C, but rose dramatically above 35°C (Q10 >8.3×107,from 0.0008 at 35°C to 7.30 mg g–1 h–1at 40°C). This steep rise in cloacal EWL coincided with an increasing suppression of body temperature relative to ambient temperature. Dehydration to 80% of initial body mass led to a delay in the onset and an attenuation of the dramatic increase in cloacal EWL. These results emphasize the potential value of EWL for thermoregulation in ectotherms and demonstrate for the first time the role of the cloaca in this process.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3