Laminin-5-integrin interaction signals through PI 3-kinase and Rac1b to promote assembly of adherens junctions in HT-29 cells

Author:

Chartier Nicolas T.1,Lainé Michèle1,Gout Stéphanie1,Pawlak Géraldine1,Marie Christiane A.1,Matos Paulo2,Block Marc R.1,Jacquier-Sarlin Muriel R.1

Affiliation:

1. Laboratoire d'Etude de la Différenciation et de l'Adhérence Cellulaires, UMR UJF/CNRS 5538, Institut Albert Bonniot, Faculté de Médecine de Grenoble, Domaine de la Merci, 38706 La Tronche Cedex, France

2. Centro de genética Humana, Instituto Nacional de Saùde `Dr Ricardo Jorge' Avenida Padre Cruz, 1649-016 Lisboa, Portugal

Abstract

Human intestinal cell differentiation is mediated by signaling pathways that remain largely undefined. We and others have shown that cell migration and differentiation along the crypt-villus axis is associated with temporal and spatial modulations of the repertoire, as well as with the function of integrins and E-cadherins and their substrates. Cross-talk between integrin and cadherin signaling was previously described and seems to coordinate this differentiation process. Here, we report that engagement of α6 and, to a lesser extent, α3 integrin subunits after HT-29 cell adhesion on laminin 5 increases the expression of E-cadherin, which then organizes into nascent adherens junctions. We further identify that phosphoinositide 3-kinase (PI 3-kinase) activation plays a key role in this cross-talk. Indeed, integrin-dependent adhesion on laminin 5 stimulates PI 3-kinase activity. Immunofluorescence and immunoprecipitation experiments revealed that activated PI 3-kinase is recruited at cell-cell contacts. Using LY294002, an inhibitor of PI 3-kinase activity, we found that this activation is essential for E-cadherin connection with the cytoskeleton and for biogenesis of adherens junctions. Finally, we demonstrated that PI 3-kinase could signal through Rac1b activation to control adherens junction assembly. Our results provide a mechanistic insight into integrin-cadherin cross-talk and identify a novel role for PI 3-kinase in the establishment of adherens junctions.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3