S-adenosyl-L-methionine supplementation alleviates damaged intestinal epithelium and inflammatory infiltration caused by Mat2a deficiency

Author:

Li Miao-Lin1,Cao Si-Yi1,Qu Jia1,Zhang Lei1,Gao Qiang2,Wang Xu1ORCID,Yin Miao1,Liu Ying3,Lei Ming-Zhu1ORCID,Lei Qun-Ying14ORCID

Affiliation:

1. Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University 1 , Shanghai 200032 , People's Republic of China

2. 2 Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, People's Republic of China

3. 3 Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China

4. 4 Department of Oncology, Cancer Institutes, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China

Abstract

ABSTRACT Methionine is important for intestinal development and homeostasis in various organisms. However, the underlying mechanisms are poorly understood. Here, we demonstrate that the methionine adenosyltransferase gene Mat2a is essential for intestinal development and that the metabolite S-adenosyl-L-methionine (SAM) plays an important role in intestinal homeostasis. Intestinal epithelial cell (IEC)-specific knockout of Mat2a exhibits impaired intestinal development and neonatal lethality. Mat2a deletion in the adult intestine reduces cell proliferation and triggers IEC apoptosis, leading to severe intestinal epithelial atrophy and intestinal inflammation. Mechanistically, we reveal that SAM maintains the integrity of differentiated epithelium and protects IECs from apoptosis by suppressing the expression of caspases 3 and 8 and their activation. SAM supplementation improves the defective intestinal epithelium and reduces inflammatory infiltration sequentially. In conclusion, our study demonstrates that methionine metabolism and its intermediate metabolite SAM play essential roles in intestinal development and homeostasis in mice.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Municipal Education Commission

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3