Keeping your cool: thermoregulatory performance and plasticity in desert cricetid rodents

Author:

Ramirez Richard W.1ORCID,Riddell Eric A.2ORCID,Beissinger Steven R.23ORCID,Wolf Blair O.1ORCID

Affiliation:

1. Department of Biology, University of New Mexico Castetter Hall 1480, 219 Yale Blvd NE, Albuquerque, NM 87131, USA

2. Museum of Vertebrate Zoology, 3101 Valley Life Science Building, University of California, Berkeley, Berkeley, CA 94720, USA

3. Department of Environmental Science, Policy, and Management, 130 Mulford Hall, University of California, Berkeley, Berkeley, CA 94720, USA

Abstract

ABSTRACT Small mammals in hot deserts often avoid heat via nocturnality and fossoriality, and are thought to have a limited capacity to dissipate heat using evaporative cooling. Research to date has focused on thermoregulatory responses to air temperatures (Ta) below body temperature (Tb). Consequently, the thermoregulatory performance of small mammals exposed to high Ta is poorly understood, particularly responses across geographic and seasonal scales. We quantified the seasonal thermoregulatory performance of four cricetid rodents (Neotoma albigula, Neotoma lepida, Peromyscus eremicus, Peromyscus crinitus) exposed to high Ta, at four sites in the Mojave Desert. We measured metabolism, evaporative water loss and Tb using flow-through respirometry. When exposed to Ta≥Tb, rodents showed steep increases in Tb, copious salivation and limited evaporative heat dissipation. Most individuals were only capable of maintaining Ta–Tb gradients of ∼1°, resulting in heat tolerance limits (HTLs) in the range Ta=43–45°C. All species exhibited a thermoneutral Tb of ∼35–36°C, and Tb increased to maximal levels of ∼43°C. Metabolic rates and rates of evaporative water loss increased steeply in all species as Ta approached Tb. We also observed significant increases in resting metabolism and evaporative water loss from summer to winter at Ta within and above the thermoneutral zone. In contrast, we found few differences in the thermoregulatory performance within species across sites. Our results suggest that cricetid rodents have a limited physiological capacity to cope with environmental temperatures that exceed Tb and that a rapidly warming environment may increasingly constrain their nocturnal activity.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3