Affiliation:
1. Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
2. Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
Abstract
In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the survived Foxp1+ MNs showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1+ MNs are the rostral continuation of LMC. Knock-down and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1+ MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1+ MNs committed to LMC neurons, depending on the Hox expression pattern.
Funder
Japan Society for the Promotion of Science
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献