Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1

Author:

Elowe Sabine1,Dulla Kalyan1,Uldschmid Andreas1,Li Xiuling2,Dou Zhen1,Nigg Erich A.13

Affiliation:

1. Department of Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

2. Group 1803, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China

3. Biozentrum, University of Basel, 4056 Basel, Switzerland

Abstract

The BubR1 checkpoint protein performs multiple functions in mitosis. We have carried out a functional analysis of conserved motifs of human BubR1 (also known as BUB1B) and demonstrate that spindle assembly checkpoint (SAC) and chromosome attachment functions can be uncoupled from each other. Mutation of five proline-directed serine phosphorylation sites, identified in vivo by mass spectrometry, essentially abolishes attachment of chromosomes to the spindle but has no effect on SAC functionality. By contrast, mutation of the two conserved KEN boxes required for SAC function does not impact chromosome congression. Interestingly, the contribution of the two KEN-box motifs is not equal. Cdc20 associates with the N-terminal but not C-terminal KEN box, and mutation of the N-terminal KEN motif results in more severe acceleration of mitotic timing. Moreover, the two KEN motifs are not sufficient for maximal binding of Cdc20 and APC/C, which also requires sequences in the BubR1 C-terminus. Finally, mutation of the GLEBS motif causes loss of Bub3 interaction and mislocalization of BubR1 from the kinetochore; concomitantly, BubR1 phosphorylation as well as SAC activity and chromosome congression are impaired, indicating that the GLEBS motif is strictly required for both major functions of human BubR1.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3