A microtubule-independent role of p150glued in secretory cargo concentration at endoplasmic reticulum exit sites

Author:

Verissimo Fatima1,Halavatyi Aliaksandr1,Pepperkok Rainer1,Weiss Matthias2

Affiliation:

1. Cell Biology and Biophysics Unit, EMBL, Meyerhofstraße 1, D-69117 Heidelberg, Germany

2. Experimental Physics I, Universitaetsstr. 30, University of Bayreuth, D-95440 Bayreuth, Germany

Abstract

Newly synthesized proteins are sorted into COPII-coated transport carriers at the endoplasmic reticulum (ER). Assembly of the COPII coat complex, which occurs at ER exit sites (ERES), is initiated by membrane association and GTP loading of SAR1, followed by the recruitment of the SEC23/24 and SEC13/31 sub-complexes. Both of these two sub-complexes stimulate GTP hydrolysis and coat disassembly. This inherent disassembly capacity of COPII complexes needs to be regulated to allow sufficient time for cargo sorting and transport carrier formation. Using fluorescence recovery after photobleaching (FRAP) and mathematical modelling we show that p150glued, a component of the dynactin complex, stabilizes the COPII pre-budding complex on ER membranes in a microtubule-independent manner. Concentration of the secretory marker ts-O45-G at ERES is reduced in the presence of a C-terminal p150glued fragment that prevents binding of endogenous p150glued to SEC23. A similar cargo reduction is observed upon p150glued knockdown. Altogether, our data suggest that cargo concentration at ERES is regulated by p150glued to coordinate protein sorting and transport carrier formation with the subsequent long-range transport towards the Golgi complex along microtubules.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3