Sex-specific energy management strategies in response to training for increased foraging effort prior to reproduction in captive zebra finches

Author:

Yap Kang Nian1ORCID,Powers Donald R.2ORCID,Vermette Melissa L.1,Tsai Olivia Hsin-I.1,Williams Tony D.1

Affiliation:

1. Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada

2. Department of Biology, George Fox University, 414 N. Meridian Street, Newberg, OR 97132, USA

Abstract

ABSTRACT Free-living animals often engage in behaviour that involves high rates of workload and results in high daily energy expenditure (DEE), such as reproduction. However, the evidence for elevated DEE accompanying reproduction remains equivocal. In fact, many studies have found no difference in DEE between reproducing and non-reproducing females. One of the hypotheses explaining the lack of difference is the concept of an ‘energetic ceiling’. However, it is unclear whether the lack of increase in energy expenditure is due to the existence of an energetic ceiling and/or compensation by males during parental care. To investigate whether an energetic ceiling exists, we experimentally manipulated foraging effort in captive zebra finches, Taeniopygia guttata, creating two groups with high and low foraging efforts followed by both groups breeding in the low foraging effort common garden condition. DEE was measured in both sexes throughout the experiment. We show sex-specific energy management strategies in response to training for increased foraging effort prior to reproduction. Specifically, males and females responded differently to the high foraging effort treatment and subsequently to chick rearing in terms of energy expenditure. Our results also suggest that there is an energetic ceiling in females and that energetic costs incurred prior to reproduction can be carried over into subsequent stages of reproduction in a sex-specific manner.

Funder

Natural Sciences and Engineering Council of Canada

National Aeronautics and Space Administration

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3