EGFR-dependent network interactions that pattern Drosophila eggshell appendages

Author:

Simakov David S. A.1,Cheung Lily S.2,Pismen Len M.1,Shvartsman Stanislav Y.2

Affiliation:

1. Department of Chemical Engineering, Technion-Israel Institute of Technology, 32000, Israel

2. Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08540, USA

Abstract

Similar to other organisms, Drosophila uses its Epidermal Growth Factor Receptor (EGFR) multiple times throughout development. One crucial EGFR-dependent event is patterning of the follicular epithelium during oogenesis. In addition to providing inductive cues necessary for body axes specification, patterning of the follicle cells initiates the formation of two respiratory eggshell appendages. Each appendage is derived from a primordium comprising a patch of cells expressing broad (br) and an adjacent stripe of cells expressing rhomboid (rho). Several mechanisms of eggshell patterning have been proposed in the past, but none of them can explain the highly coordinated expression of br and rho. To address some of the outstanding issues in this system, we synthesized the existing information into a revised mathematical model of follicle cell patterning. Based on the computational model analysis, we propose that dorsal appendage primordia are established by sequential action of feed-forward loops and juxtacrine signals activated by the gradient of EGFR signaling. The model describes pattern formation in a large number of mutants and points to several unanswered questions related to the dynamic interaction of the EGFR and Notch pathways.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3