Affiliation:
1. Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA
Abstract
Identification of the signaling pathways that influence the reprogramming of Müller glia into neurogenic retinal progenitors is key to harnessing the potential of these cells to regenerate the retina. Glucocorticoid receptor (GCR) signaling is commonly associated with anti-inflammatory responses and GCR agonists are widely used to treat inflammatory diseases of the eye, even though the cellular targets and mechanisms of action in the retina are not well understood. We find that signaling through GCR has a significant impact upon the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). The primary amino acid sequence and pattern of GCR expression in the retina is highly conserved across vertebrate species, including chickens, mice, guinea pigs, dogs and humans. In all of these species we find GCR expressed by the Müller glia. In the chick retina, we find that GCR is expressed by progenitors in the circumferential marginal zone (CMZ) and is upregulated by Müller glia in acutely damaged retinas. Activation of GCR signaling inhibits the formation of MGPCs and antagonizes FGF2/MAPK signaling in the Müller glia. By contrast, we find that inhibition of GCR signaling stimulates the formation of proliferating MGPCs in damaged retinas, and enhances the neuronal differentiation while diminishing glial differentiation. Given the conserved expression pattern of GCR in different vertebrate retinas, we propose that the functions and mechanisms of GCR signaling are highly conserved and are mediated through the Müller glia. We conclude that GCR signaling directly inhibits the formation of MGPCs, at least in part, by interfering with FGF2/MAPK signaling.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献