The influence of dissolved organic matter (DOM) on sodium regulation and nitrogenous waste excretion in the zebrafish (Danio rerio)

Author:

Al-Reasi Hassan A.12ORCID,Smith D. Scott2,Wood Chris M.134

Affiliation:

1. Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1

2. Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5

3. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA

4. Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

Abstract

Dissolved organic matter (DOM) is both ubiquitous and diverse in composition in natural waters, but its effects on the branchial physiology of aquatic organisms have received little attention relative to other variables (e.g. pH, hardness, salinity, alkalinity). Here we investigated the effects of four chemically distinct DOM isolates (three natural, one commercial, ranging from autochthonous to highly allochthonous, all at∼6 mg C L−1) on the physiology of gill ionoregulation and N-waste excretion in zebrafish acclimated to either circumneutral (7.0 – 8.0) or acidic pH (5.0). Overall, lower pH tended to increase net branchial ammonia excretion, net K+ loss, and [3H]PEG-4000 clearance rates (indicators of transcellular and paracellular permeability respectively). However unidirectional Na+ efflux, urea excretion, and drinking rates were unaffected. DOMs tended to stimulate unidirectional Na+ influx rate and exerted subtle effects on the concentration-dependent kinetics of Na+ uptake, increasing maximum transport capacity. All DOM sources reduced passive Na+ efflux rates regardless of pH, but exerted negligible effects on N-waste excretion, drinking rate, net K+ loss, or [3H]PEG-4000 clearance, so the mechanism of Na+ loss reduction remains unclear. Overall, these actions appear beneficial to ionoregulatory homeostasis in zebrafish, and some may be related to physico-chemical properties of the DOMs. They are very different from those seen in a recent parallel study on Daphnia magna using the same DOM isolates, indicating that DOM actions may be both species-specific and DOM-specific.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3