Elevated temperatures dampen the innate immune capacity of developing lake sturgeon (Acipenser fulvescens)

Author:

Bugg William S.1ORCID,Yoon Gwangseok R.12,Schoen Alexandra N.1,Weinrauch Alyssa M.1,Jeffries Ken M.1,Anderson W. Gary1

Affiliation:

1. University of Manitoba 1 Department of Biological Sciences , , 50 Sifton Road, Winnipeg, MB , Canada , R3T 2N2

2. University of Toronto Scarborough 2 Department of Biological Sciences , , 1265 Military Trail, Toronto, ON , Canada , M4A 1AC

Abstract

ABSTRACT Chronic exposure to high temperatures may leave freshwater fishes vulnerable to opportunistic pathogens, particularly during early life stages. Lake sturgeon, Acipenser fulvescens, populations within the northern expanse of their range in Manitoba, Canada, may be susceptible to high temperature stress and pathogenic infection. We acclimated developing lake sturgeon for 22 days to two ecologically relevant, summer temperatures (16 and 20°C). Individuals from both acclimation treatments were then exposed to 0, 30 and 60 µg ml−1 bacterial lipopolysaccharides (endotoxins), as an immune stimulus, for 48 h and sampled 4 and 48 h during trial exposures and following a 7 day recovery period. We then measured whole-body transcriptional (mRNA) responses involved in the innate immune, stress and fatty acid responses following acute exposure to the bacterial endotoxins. Data revealed that overall levels of mRNA transcript abundance were higher in 20°C-reared sturgeon under control conditions. However, following exposure to a bacterial stimulus, lake sturgeon acclimated to 16°C produced a more robust and persistent transcriptional response with higher mRNA transcript abundance across innate immune, stress and fatty acid responses than their 20°C-acclimated counterparts. Additional whole-animal performance metrics (critical thermal maximum, metabolic rate, cortisol concentration and whole-body and mucosal lysozyme activity) demonstrated acclimation-specific responses, indicating compromised metabolic, stress and enzymatic capacity following the initiation of immune-related responses. Our study showed that acclimation to 20°C during early development impaired the immune capacity of developing lake sturgeon as well as the activation of molecular pathways involved in the immune, stress and fatty acid responses. The present study highlights the effects of ecologically relevant, chronic thermal stress on seasonal pathogen susceptibility in this endangered species.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Manitoba

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3