Affiliation:
1. Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, B.C., Canada, V6T 1Z4
Abstract
Environmental hypoxia presents a metabolic challenge for animals because it inhibits mitochondrial respiration and can lead to the generation of reactive oxygen species (ROS). We investigated the interplay between O2 use for aerobic respiration and ROS generation among sculpin fishes (Cottidae, Actinopterygii) that are known to vary in whole-animal hypoxia tolerance. We hypothesized that mitochondria from hypoxia tolerant sculpins would show more efficient O2 use with a higher phosphorylation efficiency and lower ROS emission. We showed that brain mitochondria from more hypoxia tolerant sculpins had lower complex I and higher complex II flux capacities compared with less hypoxia tolerant sculpins, but these differences were not related to variation in phosphorylation efficiency (ADP/O) or mitochondrial coupling (respiratory control ratio). The hypoxia tolerant sculpin had higher mitochondrial H2O2 emission per O2 consumed (H2O2/O2) under oligomycin-induced state 4 conditions compared to less hypoxia tolerant sculpin. An in vitro redox challenge experiment revealed species differences in how well mitochondria defend their glutathione redox status when challenged with high levels of reduced glutathione, but the redox challenge elicited the same H2O2/O2 in all species. Furthermore, in vitro anoxia-recovery lowered absolute H2O2 emission (H2O2/mg mitochondrial protein) in all species and negatively impacted state 3 respiration rates in some species, but the responses were not related to hypoxia tolerance. Overall, we clearly demonstrate a relationship between hypoxia tolerance and complex I and II flux capacities in sculpins, but the differences in complex flux capacity do not appear to be directly related to variation in ROS metabolism.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献