Effect of Manduca Sexta Diuretic Hormone and related Peptides on isolated Malpigfflan Tubules of the House Cricket Acheta Domesticus (L.)

Author:

COAST GEOFFREY M.1,HAYES TIMOTHY K.2,KAY IAIN1,CHUNG JUM-SOOK1

Affiliation:

1. Department of Biology, Blrkbeck College, London WC1E 7HX, UK

2. Department of Entomology, Texas A & M University, Accepted College Station, TX 77843, USA

Abstract

Previously, a corticotropin releasing factor (CRF)-like diuretic peptide (Manduca-DH) has been isolated from Manduca sexta and shown to stimulate fluid excretion in vivo in post-eclosion Pieris rapae adults and in pre-wandering postfeeding Manduca sexta larvae. However, Manduca- DH was reported to have no effect on Malpighian tubules in vitro. Manduca-DH and [Nle2,11]-Manduca-DH were synthesized in Texas and assayed in London on isolated Malpighian tubules of Acheta domesticus. Manduca- DH stimulated fluid secretion by about 60% of the maximum response achievable with extracts of corpora cardiaca and increased the production of cyclic AMP. In combination with 10−4 mol l−1 3-isobutyl-l-methyl xanthine (IBMX), Manduca-DH stimulated maximal secretion. A number of CRF-related peptides also stimulated fluid secretion and cyclic AMP production in cricket tubules, and the CRF antagonist α-helical-CRF[9-14] blocked the stimulation of fluid secretion by Manduca-DH. [Nle2,11]-Manduca-DH was more active than Manduca-DH in both assays, suggesting that methionine residues in the natural peptide may become oxidized. Taken in conjunction with previous in vivo studies, the present findings suggest that a Manduca-DH-Mke diuretic peptide is the hormone controlling post-eclosion diuresis in butterflies, and Manduca-DH was shown to stimulate both fluid secretion and cyclic AMP production in Malpighian tubules from 1–12 h posteclosion Pieris rapae adults. The function of the peptide in Manduca sexta is discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of Systemic Osmoregulation in Insects;Annual Review of Entomology;2024-01-25

2. Hormones Controlling Homeostasis in Insects;Insect Endocrinology;2012

3. Insect Peptide Hormones;Amino Acids, Peptides and Proteins in Organic Chemistry;2010-12-28

4. Post-eclosion diuresis in a flightless insect, the silkmoth Bombyx mori;Physiological Entomology;2008-03-13

5. Hormones Controlling Homeostasis in Insects;Comprehensive Molecular Insect Science;2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3