Daily temperature extremes play an important role in predicting thermal effects

Author:

Ma Gang1,Hoffmann Ary A.2,Ma Chun-Sen1

Affiliation:

1. Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China

2. Departments of Zoology and Genetics, Bio21 Institute, The University of Melbourne, Victoria, Australia

Abstract

Organisms in natural environments experience diel temperature fluctuations rather than constant temperatures, including sporadic extreme conditions. Studies based mainly on model organisms have tended to focus on responses to average temperatures or short-term heat stress, which overlooks the potential impact of daily fluctuations including stressful daytime periods and milder nighttime periods. Here we focus on daily maximum temperatures, while holding nighttime temperatures constant, to specifically investigate high temperature effects on demographic parameters and fitness in the English grain aphid, Sitobion avenae (Fabricius). We then compared the observed effects of different daily maximum temperatures with predictions from constant temperature-performance expectations. Moderate daily maximum temperatures depressed aphid performance while extreme conditions had dramatic effects even when mean temperatures were below the critical maximum. Predictions based on daily average temperature underestimated negative effects of temperature on performance by ignoring daily maximum temperature, while predictions based on daytime maximum temperatures overestimated detrimental impacts by ignoring recovery under mild nighttime temperatures. Our findings suggest that daily maximum temperature will play an important role in regulating natural population dynamics and should be considered in predictions. These findings have implications for natural population dynamics particularly when considering the expected increase in extreme temperature events under climate change.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3