Affiliation:
1. Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
Abstract
The transition from aquatic to terrestrial environments places significant mechanical challenges on skeletal support systems. Crabs have made this transition multiple times and are the largest arthropods to inhabit both environments. Furthermore, they alternate between rigid and hydrostatic skeletons, making them an interesting system to examine mechanical adaptations in skeletal support systems. I hypothesized that terrestrial crabs have modified morphology to enhance mechanical stiffness and that rigid and hydrostatic skeletons scale differently from each other, with stronger allometric relationships on land. Using the aquatic blue crab, Callinectes sapidus, and the terrestrial blackback land crab, Gecarcinus lateralis, I measured and compared body mass, merus morphology (dimensions, cuticle thickness, and I) and mechanics (EI, E, critical stress, and hydrostatic pressure) of rigid and hydrostatic stage crabs encompassing a range of sizes (C. sapidus: 1.5-133 g, N≤24; G. lateralis: 22-70 g, N≤15). Results revealed that rigid G. lateralis has similar morphology (L/D and T/D) than C. sapidus, but the mechanics and most scaling relationships are the same. Hydrostatic land crabs differ from aquatic crabs by having different morphology (thinner cuticle), mechanics (greater internal pressures), and scaling relationship (cuticle thickness). These results suggest that the rigid crab body plan is inherently overbuilt and sufficient to deal with the greater gravitational loading that occurs on land, while mechanical adaptations are important for hydrostatically supported crabs. Compared to other arthropods and hydrostatic animals, crabs possess distinct strategies for adapting mechanically to life on land.
Funder
Sigma Xi
PADI Foundation
Marine Biology Research Division, Scripps Institution of Oceanography
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference79 articles.
1. Muscular and hydrostatic action in the sea-anemone Metridium senile (L.);Batham;J. Exp. Biol.,1950
2. Bioenergetic and kinematic consequences of limblessness in larval diptera;Berrigan;J. Exp. Biol.,1993
3. Crab carapace hydrodynamics;Blake;J. Zool.,1985
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献