Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease

Author:

Rucker Mary1,Fraites Thomas J.1,Porvasnik Stacy L.1,Lewis Melissa A.1,Zolotukhin Irene1,Cloutier Denise A.1,Byrne Barry J.1

Affiliation:

1. Powell Gene Therapy Center, and Departments of Molecular Genetics and Microbiology and Pediatrics, University of Florida College of Medicine,Gainesville, Florida 32610, USA

Abstract

Several human genetic diseases that affect striated muscle have been modeled by creating knockout mouse strains. However, many of these are perinatal lethal mutations that result in death from respiratory distress within hours after birth. As the diaphragm muscle does not contract until birth, the sudden increase in diaphragm activity creates permanent injury to the muscle causing it to fail to meet respiratory demands. Therefore, the impact of these mutations remains hidden throughout embryonic development and early death prevents investigators from performing detailed studies of other striated muscle groups past the neonatal stage. Glycogen storage disease type II (GSDII), caused by a deficiency in acid α-glucosidase (GAA), leads to lysosomal accumulation of glycogen in all cell types and abnormal myofibrillogenesis in striated muscle. Contractile function of the diaphragm muscle is severely affected in both infantile-onset and late-onset individuals, with death often resulting from respiratory failure. The knockout mouse model of GSDII survives well into adulthood despite the gradual weakening of all striated muscle groups. Using this model, we investigated the delivery of recombinant adeno-associated virus (rAAV) vectors encoding the human GAA cDNA to the developing embryo. Results indicate specific high-level transduction of diaphragm tissue, leading to activity levels up to 10-fold higher than normal and restoration of normal contractile function. Up to an estimated 50 vector copies per diploid genome were quantified in treated diaphragms. Histological glycogen staining of treated diaphragms revealed prevention of lysosomal glycogen accumulation in almost all fibers when compared with untreated controls. This method could be employed with disease models where specific rescue of the diaphragm would allow for increased survival and thus further investigation into the impact of the gene deletion on other striated muscle groups.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3