Visual acuity of fly photoreceptors in natural conditions - dependence on UV sensitizing pigment and light-controlling pupil

Author:

Stavenga Doekele G.1

Affiliation:

1. Department of Neurobiophysics, University of Groningen, Nijenborgh 4,NL 9747 AG Groningen, The Netherlands

Abstract

SUMMARY The effect of the UV-absorbing sensitizing pigment of fly photoreceptors on absolute, spectral and angular sensitivity was investigated with a wave-optics model for the facet lens-rhabdomere system. When sky light was used as a UV-rich light source, one sensitizing pigment molecule per rhodopsin increased the photoreceptor absorption by 14-18% with respect to pure rhodopsin, whilst two sensitizing pigment molecules per rhodopsin increased the absorption by 20-27%. Upon light adaptation, when the pupil mechanism is activated,photoreceptor absorption decreases; in the housefly, Musca, by up to 6-fold. The fully light-adapted pupil diminishes the photoreceptor's acceptance angle by a factor of ∼0.6 due to selective absorption of higher order waveguide modes. Spatial acuity of dark-adapted photoreceptors is more or less constant throughout the visual wavelength range, including the UV,because the waveguide optics of the rhabdomere compromise acuity least at wavelengths most limited by diffraction of the facet lens. Diffraction is not the general limiting factor causative for UV sensitivity of insect eyes. Visual acuity is governed by diffraction only with a fully light-adapted pupil, which absorbs higher waveguide modes. Closure of the blue-absorbing pupil causes a UV-peaking spectral sensitivity of fly photoreceptors. The sensitizing pigment does not play an appreciable role in modifying spatial acuity, neither in the dark- nor the light-adapted state, due to the dominant contribution of green light in natural light sources.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3