What ears do for bats: a comparative study of pinna sound pressure transformation in chiroptera

Author:

Obrist M. K.1,Fenton M. B.1,Eger J. L.1,Schlegel P. A.1

Affiliation:

1. Department of Biology, York University, Ontario, Canada.

Abstract

Using a moveable loudspeaker and an implanted microphone, we studied the sound pressure transformation of the external ears of 47 species of bats from 13 families. We compared pinna gain, directionality of hearing and interaural intensity differences (IID) in echolocating and non-echolocating bats, in species using different echolocation strategies and in species that depend upon prey-generated sounds to locate their targets. In the Pteropodidae, two echolocating species had slightly higher directionality than a non-echolocating species. The ears of phyllostomid and vespertilionid species showed moderate directionality. In the Mormoopidae, the ear directionality of Pteronotus parnellii clearly matched the dominant spectral component of its echolocation calls, unlike the situation in three other species. Species in the Emballonuridae, Molossidae, Rhinopomatidae and two vespertilionids that use narrow-band search-phase echolocation calls showed increasingly sharp tuning of the pinna to the main frequency of their signals. Similar tuning was most evident in Hipposideridae and Rhinolophidae, species specialized for flutter detection via Doppler-shifted echoes of high-duty-cycle narrow-band signals. The large pinnae of bats that use prey-generated sounds to find their targets supply high sound pressure gain at lower frequencies. Increasing domination of a narrow spectral band in echolocation is reflected in the passive acoustic properties of the external ears (sharper directionality). The importance of IIDs for lateralization and horizontal localization is discussed by comparing the behavioural directional performance of bats with their bioacoustical features.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3