Production of different phenotypes from the same genotype in the same environment by developmental variation

Author:

Vogt Günter1,Huber Martin2,Thiemann Markus3,van den Boogaart Gerald4,Schmitz Oliver J.3,Schubart Christoph D.2

Affiliation:

1. Zoological Institute and Museum, University of Greifswald,Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany

2. Biology 1, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany

3. Department of Analytical Chemistry, University of Wuppertal,Gauss-Straße 20, D-42119 Wuppertal, Germany

4. Department of Mathematics and Computer Science, Jahnstraße 15a,University of Greifswald, D-17487 Greifswald, Germany

Abstract

SUMMARY The phenotype of an organism is determined by the genes, the environment and stochastic developmental events. Although recognized as a basic biological principle influencing life history, susceptibility to diseases, and probably evolution, developmental variation (DV) has been only poorly investigated due to the lack of a suitable model organism. This obstacle could be overcome by using the recently detected, robust and highly fecund parthenogenetic marbled crayfish as an experimental animal. Batch-mates of this clonal crayfish, which were shown to be isogenic by analysis of nuclear microsatellite loci,exhibited surprisingly broad ranges of variation in coloration, growth,life-span, reproduction, behaviour and number of sense organs, even when reared under identical conditions. Maximal variation was observed for the marmorated coloration, the pattern of which was unique in each of the several hundred individuals examined. Variation among identically raised batch-mates was also found with respect to fluctuating asymmetry, a traditional indicator of the epigenetic part of the phenotype, and global DNA methylation, an overall molecular marker of an animal's epigenetic state. Developmental variation was produced in all life stages, probably by reaction–diffusion-like patterning mechanisms in early development and non-linear, self-reinforcing circuitries involving behaviour and metabolism in later stages. Our data indicate that, despite being raised in the same environment, individual genotypes can map to numerous phenotypes viaDV, thus generating variability among clone-mates and individuality in a parthenogenetic species. Our results further show that DV, an apparently ubiquitous phenomenon in animals and plants, can introduce components of randomness into life histories, modifying individual fitness and population dynamics. Possible perspectives of DV for evolutionary biology are discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3