Thermo-sensitive response based on the membrane fluidity adaptation inParamecium multimicronucleatum

Author:

Toyoda Taichi1,Hiramatsu Yoshinori2,Sasaki Toshiaki1,Nakaoka Yasuo12

Affiliation:

1. Biophysical Dynamics Laboratories, Graduate School of Frontier Bioscience,Osaka University, Toyonaka, Osaka 560-8531, Japan

2. Division of Biophysical Engineering, Graduate School of Engineering Science,Osaka University, Toyonaka, Osaka 560-8531, Japan

Abstract

SUMMARYRelationships between the thermo-sensitive response and membrane lipid fluidity were studied using a ciliated protozoan, Paramecium multimicronucleatum. Paramecium elicits a transient membrane depolarization in response to a cooling stimulus (temperature drop). The depolarization amplitude was largest when the cooling stimulus was started from the culture temperature, whilst when cooling started at a temperature more than 5°C higher or lower than the culture temperature, only a small depolarization was induced. Therefore, the cooling-induced response was dependent on the culture temperature and its sensitivity to the cooling stimulus was highest at the culture temperature. Membrane fluidity measurements of living cells using the fluorescent dye 6-lauroyl-2-dimethylaminonaphthalene (laurdan) showed that the fluidity measured at the culture temperature was almost constant irrespective of the temperature at which the cells had been cultured and adapted, which is consistent with homeoviscous adaptation. The constant fluidity at the culture temperature quickly decreased within a few seconds of application of the cooling stimulus, and the decreased fluidity gradually readapted to a constant level at the decreased temperature within 1 h. When the constant fluidity at culture temperature was modified by the addition of procaine or benzyl alcohol, the cooling-induced depolarization was completely abolished. These results suggest the possibility that the adaptation of fluidity to a constant level and its quick decrease below the constant level activate cooling-sensitive channels to elicit the transient depolarization.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3