Lipid content influences division of labour in a clonal ant

Author:

Bernadou Abel1ORCID,Hoffacker Elisabeth1,Pable Julia1,Heinze Jürgen1ORCID

Affiliation:

1. Zoology / Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany

Abstract

The fat body, a major metabolic hub in insects, is involved in many functions, e.g., energy storage, nutrient sensing, and immune response. In social insects, fat appears to play an additional role in division of labour between egg-layers and workers, which specialize in non-reproductive tasks inside and outside their nest. For instance, reproductives are more resistant to starvation, and changes in fat content have been associated with the transition from inside to outside work or reproductive activities. However, most studies remained correlative and we still need to unravel the causal interrelations between fat content, and division of both reproductive and non-reproductive labour. Clonal ants, e.g., Platythyrea punctata, are ideal models for studying task partitioning without confounding variation in genotype and morphology. In this study, we examined the range of variation and flexibility of fat content throughout the lifespan of workers, the thresholds of corpulence associated with foraging or reproduction and whether low fat content is a cause rather than a consequence of the transition to foraging. We found that lipid stores change with division of labour from corpulent to lean and, in reverted nurses, back to corpulent. In addition, our data show the presence of fat content thresholds that trigger the onset of foraging or egg laying behaviour. Our study supports the view that mechanisms that regulate reproduction and foraging in solitary insects, in particular the nutritional status of individuals, have been co-opted to regulate division of labour in colonies of social insects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3