Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate

Author:

Wang Jing12,Liu X. Johné123

Affiliation:

1. Ottawa Health Research Institute, Ottawa Hospital Civic Campus, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada

2. Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 550 Cumberland, Ottawa, Ontario, K1N 6N5, Canada

3. Department of Obstetrics and Gynaecology, University of Ottawa, 550 Cumberland, Ottawa, Ontario, K1N 6N5, Canada

Abstract

3′-5′ cyclic adenosine monophosphate (cAMP)-dependent protein kinase, PKA, is thought to be a key enzyme that controls prophase arrest in vertebrate oocytes. It has long been established that overexpression of the catalytic subunit of PKA inhibits hormone-induced frog oocyte maturation whereas overexpression of the regulatory subunits induces hormone-independent oocyte maturation. However, the activities of endogenous oocyte PKA, or its regulation by the maturation-inducing hormone progesterone, have never been directly demonstrated in frog oocytes. We have developed a novel expressed substrate for PKA in live oocytes by constructing a fusion protein containing an N-terminal myristylation sequence (derived from the Src tyrosine kinase) followed by an antigenic epitope tag and a substrate motif (the C-terminal cytoplasmic domain of β2 adrenergic receptor). Following mRNA injection, the phosphorylation status of the substrate was determined by two-dimensional electrophoresis followed by epitope immunoblotting, or alternatively by SDS-PAGE followed by immunoblotting using antibodies specifically recognizing the PKA-phosphorylated form of the substrate. In prophase oocytes, the expressed protein, myr-HA-β2AR-C, was fully phosphorylated on a single PKA site (Ser346 of human β2 adrenergic receptor). Within one hour of the addition of progesterone, the PKA site became mostly dephosphorylated. No re-phosphorylation of the PKA site, and therefore no reactivation of PKA, was observed throughout the entire maturation process. To demonstrate the generality of this PKA substrate, we analyzed its phosphorylation status in COS-7 cells following transfection. We show that dibutyryl cAMP rapidly stimulates phosphorylation of the PKA site. These results represent the first biochemical demonstration of regulation of endogenous Xenopus oocyte PKA by progesterone. Furthermore, myr-HA-β2AR-C should be widely adaptable as an in vivo PKA activity indicator.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3