Early signaling events involved in the entry of Rickettsia conorii into mammalian cells

Author:

Martinez Juan J.1,Cossart Pascale1

Affiliation:

1. Institut Pasteur, Unité des Interactions Bactéries-Cellules, INSERM U604, Département de Biologie Cellulaire et Infection, 25 Rue du Dr Roux, 75724 Paris CEDEX 15, France

Abstract

Rickettsia conorii, the causative agent of Mediterranean spotted fever, is able to attach to and invade a variety of cell types both in vitro and in vivo. Although previous studies show that entry of R. conorii into non-phagocytic cells relies on actin polymerization, little else is known about the molecular details governing Rickettsia-host cell interactions and actin rearrangements. We determined that R. conorii recruits the Arp2/3 complex to the site of entry foci and that expression of an Arp 2/3 binding derivative of the WASP-family member, Scar, inhibited bacterial entry into Vero cells, establishing that Arp2/3 is an active component of this process. Using transient transfection with plasmids expressing dominant negative versions of small GTPases, we showed that Cdc42, but not Rac1 is involved in R. conorii invasion into Vero cells. Using pharmacological approaches, we show that this invasion is dependent on phosphoinositide (PI) 3-kinase and on protein tyrosine kinase (PTK) activities, in particular Src-family kinases. C-Src and its downstream target, p80/85 cortactin, colocalize at entry sites early in the infection process. R. conorii internalization correlated with the tyrosine phosphorylation of several other host proteins, including focal adhesion kinase (FAK), within minutes of R. conorii infection. Our results reveal that R. conorii entry into nonphagocytic cells is dependent on the Arp2/3 complex and that the interplay of pathways involving Cdc42, PI 3-kinase, c-Src, cortactin and tyrosine-phosphorylated proteins regulates Arp2/3 activation leading to the localized actin rearrangements observed during bacterial entry. This is the first report that documents the mechanism of entry of a rickettsial species into mammalian cells.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3